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We reevaluatek, a factor appearing in Langer and Turski’s formulation of the nucleation rate for both
nonrelativistic and relativistic systems with both heat conduction and viscosity. For the relativistic case, the
expression fork we present may be used in the calculation of quark drops forming in superheated baryon
material with nonzero baryon number. We compare our result with numerical results in the literature and
suggest that our treatment of the effects of viscosity leads to a reduction in the quark-gluon nucleation rate.
@S1063-651X~96!08509-1#

PACS number~s!: 64.60.Qb

I. INTRODUCTION

The classical expression for the nucleation rate of drops
or bubbles of one phase in another,

I5
k

2p
V0exp~2DF/T!, ~1!

given by Langer and Turski@1#, has recently been applied to
relativistic systems@2,3#. Herek is related to the growth rate
of bubbles or drops of radiusR and critical radiusR0 through
dR/dt5k(R2R0)[kR̃, V0 is a statistical prefactor, and
DF the difference in free energy of systems with, and with-
out, a critical size drop present. Bubbles are formed by en-
ergy density fluctuations in the vapor. Those with radiiR
smaller than a critical sizeR0 collapse, while those of the
critical size begin to grow exponentially. In the relativistic
generalization the form~1! is retained butDF, k, andV0 are
obtained using the appropriate equation of state for the rela-
tivistic material and the relativistic hydrodynamical equa-
tions. In this paper we will follow Refs.@2,3# in assuming the
form ~1!, based on the nonrelativistic Langer formalism, for
the relativistic nucleation rate and will focus primarily on the
derivation of the factork. Expressions forV0 andDF are
given in @2# and the third reference of@3#. We wish to point
out that we have no proof that the Langer nucleation rate
formalism can be extended to relativistic systems as has been
done in@2,3#.

In particular,~1! has been applied to the calculation of the
relativistic nucleation rate of hadron bubbles in quark vapor
@2,3# and to the similar problem of quark drop formation in
superheated baryon matter. Csernai and Kapusta@2# in ap-
plying the Langer-Turski nucleation rate,~1!, to the forma-
tion of a hadron bubble in quark vapor, have suggested that

k5
4s

~Dw!2R0
3 S 43h1z D , ~2!

whereh andz are the shear and bulk viscosity coefficients in
the vapor region, respectively,s is the surface tension, and
Dw the difference in enthalpy per volume between the two
phases. The result~2! is proposed for a relativistic system
with no heat conduction and so applies to a system of zero
baryon number.

Venugopalan and Vischer@4# have considered systems
with both heat conduction and viscosity and suggest that in
such cases

k5
2s

~Dw!2R0
3 FlT12S 43h1z D G , ~3!

where l is the coefficient of thermal conductivity. They
claim that ~3! is valid in both the nonrelativistic and the
relativistic cases~provided there is a net baryon number!.
The expression~3! has been used in recent calculations of the
nucleation rate of quark drops in superheated baryon mate-
rial @3#. In the case of no net baryon number the authors of
@4# suggest setting thel term equal to zero and thus obtain
~2!. In the limit of no viscosity they obtain the nonrelativistic
result of Langer and Turski@1#. The work of @4# combines
techniques and ideas from both the nonrelativistic work of
@5# and the relativistic work of@2# for systems of zero baryon
number.

While we have recently calculatedk in the case of zero
baryon number~and no heat conduction! in @6# and found a
result differing from that of@2#, the objective of the present
work is to reexamine the derivation ofk for systems with
nonzero baryon number which allow for heat conduction as a
mechanism for energy removal in phase transitions. In par-
ticular, we focus on two main points. First we are interested
in the form of viscosity terms ink in relationship to those of
heat conduction. A numerical evaluation of~3!, for the case
of quark-gluon drops forming in superheated baryon material
@3#, shows that the viscous term dominates the heat conduc-
tion term. This implies that viscosity is important for nucle-
ation. Such a result is not only significant for relativistic
systems but is also relevant to the nonrelativistic case exam-
ined by Langer and Turski because~3! is suggested to hold
for both @4#. Langer and Turski have focused on the effects
of heat conduction and ignored viscosity in@1#. If viscosity is
important then it should be incorporated into the nonrelativ-
istic expression fork. If on the other hand~3! must be modi-
fied and a new expression shows that the effects of viscosity
are small then the Langer-Turski result@1# is a good approxi-
mation for viscous systems. In addition if the effects of vis-
cosity are small the nucleation rate for quark-gluon drops in
baryon material would be reduced from the values given in
the third reference of@3#. We specifically investigate these
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possibilities in this paper. As a second goal we wish to de-
termine the differences ink, if any, arising from heat con-
duction for relativistic versus nonrelativistic systems. We
consider both nonrelativistic and relativistic systems in our
investigation of the validity of an expression such as~3!.
This allows us to obtain an expression fork for relativistic
systems in the presence of viscosity which we believe to be
more accurate than~3!.

To introduce our approach, we first calculatek for a non-
relativistic drop, forming in a vapor which is a perfect heat
conductor, both in the presence and absence of viscosity. We
then examine the arguments used in@4# and suggest that a
different way of finding k is necessary. We propose a
method similar to that presented in@6# which leads to a result
differing from ~3!. We explicitly solve fork in the presence
of finite heat conduction and viscosity for a nonrelativistic
problem to obtain an expression which, in the absence of
viscosity, yields the result of@1#. Next we examine how the
treatment of heat conduction differs in relativistic and non-
relativistic problems. We present a result for the former in
the absence of viscosity before treating a relativistic material
which requires the treatment of both heat conduction and
viscosity to obtain an expression fork. Finally we present
some numerical results for superheated baryon material un-
dergoing a process of quark-gluon drop nucleation to deter-
mine the physical importance of the viscosity terms and the
relativistic modifications to heat conduction. We determine if
the numerical dominance of the viscosity terms in~3! applies
for our expression fork and investigate how any change in
~3! affects the overall nucleation rate. To conclude we exam-
ine the scaling properties of~3! and the expression fork
which we derive, following the treatment of scaling given by
Kawasaki@7#.

II. VISCOSITY EFFECTS FOR A PERFECT
HEAT CONDUCTOR

It is possible to solve fork for a vapor which is a perfect
heat conductor both in the presence and absence of viscosity.
Such an example is not very physical because it assumes
heat can be removed quickly enough to keep the temperature
constant. This example, however, simplifies the calculation
because variables, such as pressure, depend on the density
and not on both density and temperature. The example of the
perfect heat conductor without viscosity was considered in
@1#. We develop this example to illustrate the modifications
introduced by viscosity, and to introduce both the method
and also some general features and results which arise in the
more general case where both density and temperature vary.

To begin we consider the case of a nonviscous vapor us-
ing the method of@6# based on the solution of the transport
equations in the vapor and liquid regions together with
boundary conditions which link one to the other. The method
differs from the approach of@1#, which uses differential
equations in the narrow interface region where the density
changes from that of liquid to that of vapor. The result of@1#
is obtained in the limit of smallk. After treating the case of
a nonviscous vapor we later will turn to modifications due to
viscosity.

The basic transport equations which apply to the nonrel-
ativistic case are

] tñ52¹W •~nuW !,

n] tuW 52¹W p̃. ~4!

We set the mass per particle equal to 1 in this section for
simplicity. Equations~4! result from a linearization of the
standard number density continuity and Euler equations@6#

about number densityn1ñ and fluid velocity 0W 1uW . We con-
sider flow in the radial direction only. We apply Eqs.~4! to
the vapor region and ignore the solution in the liquid region
as the fluid velocity is small there compared with that in the
vapor ~see@1#!. We relatep̃v to ñv as done in@1#:

p̃v5
]p

]n
ñv5c2ñv . ~5!

Hereñv is the variation of density, about a stationary system,
of a drop in unstable equilibrium with a vapor, andc is the
speed of sound in the vapor. The subscriptsv andl are to be
used to denote the vapor and liquid regions, respectively.
The boundary conditions at the surface of the liquid drop are

pl2pv5
2s

R
,

Dn
dR

dt
52nvuv , ~6!

where

Dn5nl2nv . ~7!

We have specifically setul to zero.
The two equations of~4! can be combined with~5! to give

the wave equation

] t
2ñ5c2¹W 2ñ. ~8!

A solution of this equation has the form

ñv}exp~kt !
exp@2q~r2R0!#

r
, ~9!

where

k25c2q2. ~10!

In addition the first equation of~4!, with ñv given by ~9!,
yields

u5
k

nvq
2 S q1

1

r D ñv . ~11!

To obtaink one must make use of the boundary condi-
tions. To do so one may first differentiate~5! with respect to
time. Next a relationship forp̃ is obtained from the condition
@1,5#

pv5
nv2s

R0Dn
~12!

by varyingR aboutR0, namely,
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p̃v52
nv2sR̃

R0
2Dn

. ~13!

Equation~13! can be differentiated with respect to time and
~6! used to replaceṘ in terms ofu. Finally solutions~9! and
~11! may be used to obtain

nv2s

~Dn!2R0
2 S q1

1

R0
D5c2q2, ~14!

whereq can be written in terms ofk using~10!. In the limit
of smallk we obtain the result of@1# for nonviscous systems:

k5A 2snv
R0
3~Dn!2

~15!

by neglectingq relative to 1/R0 in ~14!.
The inclusion of viscosity affects both Eqs.~4! and the

boundary conditions~6!. Considered to first order inu the
second equation of~4! becomes

n] tuW 52¹W
]p

]n
ñ1¹W S 43h1z D¹W •uW ~16!

while the first equation of~4! is unchanged. The first condi-
tion of ~6! is, however, modified when viscosity is included
while the second condition of~6! remains unchanged to first
order inu. The first of Eqs.~6! becomes

p̃l1bv2 p̃v2bv52
2sR̃

R0
2 , ~17!

where

bi52S 43h i1z i D¹W •~uW i2RẆ !1
4h i~ui2Ṙ!

R0
. ~18!

The termsbi , which arise in Eq.~17!, are a consequence of
the continuity of the energy-momentum tensor in a frame
moving with the drop surface@9,6# ~see Appendix B!. The
specific factor

~ui2Ṙ! ~19!

present in~18! represents the fluid velocity in a frame mov-
ing with the liquid-vapor interface.

The transport equations including viscosity effects can be
combined to obtain the following replacement for~8!:

] t
2ñ5c2¹W 2ñ1

1

nv
S 43h1z D ] t¹

W 2ñ. ~20!

A solution of this equation is still of the form~9! but with the
dispersion relation betweenk andq given by

k25S c21 S 43hv1zvD
nv

kD q2. ~21!

The boundary condition~17! must next be manipulated to
obtain a new expression forp̃v analogous to~13! so that the

same method of obtainingk for the nonviscous case can be
applied here. To find such an expression forp̃v , the terms
involving u in ~18! can be reexpressed in terms of density
using the transport equations. For example, a¹W •uW term is
replaced with a term involvingkñ using the first equation of

~4!, ¹W •RẆ is replaced with (2/R0)Ṙ. Finally ~9! and ~11! are
used to expressu in terms ofṘ5kR̃. The result is

p̃l1bl~ ñv ,R̃!2 p̃v2bv~ ñv ,R̃!52
2sR̃

R0
2 . ~22!

A problem arises in~22! since here one has two unknowns
p̃l and p̃v . Such a problem does not occur in the relativistic
zero baryon number problem of@6# as pressure and energy
density are given as functions of temperature alone.~For
details see Ref.@6#.! In the absence of viscosity~13! and

p̃l52
2sR̃

R0
2

nl
Dn

~23!

apply at the drop surface. In the viscous case the conditions
~13! and~23! cannot both hold. We choose to retain~23!, as
the velocity and thus viscous terms are neglected inside the
drop, to obtain a particular solution forp̃l . Using ~5! to
expressñv in terms of p̃v and groupingR̃ terms one may
obtain

p̃v52
R̃B1

B2
, ~24!

where

B1~k!5
2snv
R0
2Dn

2S 43h l1z l2
4

3
hv2zvD2k

R0

1kS 4h l

R0
2
4hvnl
nvR0

D ~25!

and

B2~k!5c2Y Fc21S 43hv1zvD k

nv
G . ~26!

The method employed in the nonviscous case can now be
applied and one obtains, in the limit of smallk,

k5AB1~k0!

R0Dn
. ~27!

Here k0 is the result in the absence of viscosity~15!. Al-
though the condition of perfect heat conduction assumed in
this section may be unrealistic, the result fork illustrates the
general approach we use. It shows that there are two modi-
fications due to viscosity, one in the dispersion relation be-
tweenk andq, the other in the expression forp̃v . Although
the only independent variable for the perfect heat conduction
case is density these two types of modifications are also
present in the more general case where temperature and den-
sity change. It also provides qualitative information on the
role of viscosity in the growing droplet problem. The modi-
fication toc ~21! introduces a small change ink, whenk is
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small. The viscosity terms inB1 and B2, arising from the
modified boundary conditions, also introduce a small correc-
tion under the same circumstance because they are multi-
plied byk itself.

III. DISCUSSION OF METHODS OF REF. †4‡

Reference@4# has presented an expression fork, for the
case of a drop, growing in a vapor with both finite heat
conduction and viscosity, namely~3!. The approach of Ref.
@4# is based on the Kotchine conditions and closely follows
the work of @5# which, however, ignores viscosity. We ex-
amine the method of@4# before considering an alternative
method of calculatingk in the next section. We will find
there an expression fork differing from ~3!.

The three key equations of Ref.@4# are

@nuR#5@n#dR/dt, ~28!

DwdR/dT52ldT/dr2~4/3h1z!uRduR /dr, ~29!

and

DwuR
252s~1/R021/R!. ~30!

HereDw represents the change in enthalpy density and the
square brackets in~28! denote the difference of the quantity
inside the brackets evaluated inside and outside the drop sur-
face atR. The first of these equations,~28!, represents the
conservation of matter for the growing drop. The second
gives the energy flux and describes how the released latent
heat is removed by heat conduction and viscosity. The third,
Eq. ~30!, is referred to as a momentum flux equation.

The first equation~28! with dR/dt5k(R2R0), and
uRl50 so that@nuR#5nvuRv , implies thatuRv}(R2R0).
Here uRv is the vapor fluid velocity evaluated at the drop
surface. (R2R0)}exp(kt) and so gives the time dependence
of u. Equation~30!, however, suggests thatu2}(R2R0) in
contrast with the result of~28!. This suggests a different time
dependence foru. The constrast in the time dependences of
u in ~30! and ~28! is a problem asu is understood to be
separable in time and space coordinates. The separability of
u is not so clear in the derivation of@4# but is very evident in
the differential equation approaches of@2,1#.

Equation~30!, and not~28!, is used in the calculation of
Ref. @4# to replaceuR in terms of (R2R0) which may then
be cancelled from both sides of~29! to obtain a result for
k. @Note in Ref.@4# it is shown thatdT/dr}(R2R0).# This
leads to the conclusion that the heat conduction and viscosity
terms are of equal importance. We suggest from Eq.~28! that
uR}(R2R0). This implies that the viscosity term is of
higher order and has a different time dependence than the
other two terms in~29!. ~One may note that in@1# all second
order terms inu are dropped when solving the transport
equations.!

We now suggest that the inconsistency in the time depen-
dency ofu can be avoided if one rejects~30!. The approach
of @1# follows this route. We focus on the calculation ofk for
a perfect heat conductor in Ref.@1# to demonstrate that~30!
is not used.~A minor error in @1#, corrected in@5#, does not

involve the part of the calculation focusing on the perfect
heat conductor.! Langer and Turski, in@1#, solve the two
differential equations

]n

]t
52¹W •~nuW ! ~31!

and

]uW

]t
52

¹W p

mn
2
1

2
¹W u2 ~32!

usingn5n(equilibrium)1ñ(r )ekt, u}ekt, andp5c2ñ. The
velocity is assumed to be purely radial in~32!. The general
form of the second term on the right-hand side of~32! is
2uW •¹W uW . The first equation~31! is identical to the Kotchine
result~28!. The second, the Euler equation, is used to replace
u in ~31!. Langer and Turski drop the term of orderu2.
Equation~32! is used to replace~30! in its role in finding a
way to replaceu but in this case it is linear rather than
quadratic inu. In the presence of viscosity a modified ver-
sion of the Euler equation, i.e., the Navier-Stokes equation,
is needed. If the vapor is not a perfect heat conductor then an
additional equation describing the change in temperature
with time and the rate of conduction is needed. In such a case
one would solve a total of three transport equations as shown
in @2#. The energy rate equation~29! appears to incorporate
the information of these three equations but would still need
to be solved together with~28! and a Navier-Stokes equa-
tion.

IV. NONRELATIVISTIC CASE: HEAT CONDUCTION
AND VISCOSITY

We wish to present a method to solve fork which com-
bines the transport differential equations with the Kotchine
boundary equations. The method, which differs from that of
@1,5#, leads to a general solution fork which agrees with the
smallk limit presented in@1,5#. For clarity we first examine
the case in which viscosity is absent. Then we introduce
modifications due to viscous effects. The two key transport
equations for the case of nonperfect heat conduction~finite
conductivityl) are

ku52
T

ncv

dp

dT
~¹W •uW !1

l

ncv
¹W 2u ~33!

and

k2ñ5
1

m
¹W •n¹W ~2K¹W 21 f 9!ñ1

1

m
¹W 2

dp

dT
u. ~34!

Herecv is heat capacity,p pressure, andK a constant related
to surface tension. The termu(r ) is the change in tempera-
ture from the equilibrium value due to the release of latent
heat energy. The pressure is related to the Helmholtz free
energy densityf through

p5n
] f

]n
2 f . ~35!
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Equation~34! is the Navier-Stokes equation combined with a
density conservation equation. We take the solution of Eqs.
~33! and ~34!, in the vapor region, from@1#, i.e.,

rñ5A1exp@2q1~r2R0!#1A2exp@2q2~r2R0!# ,

ru5S A1

12b
exp@2q1~r2R0!#

1A2exp@2q2~r2R0!# D T~]pv /]T!

cvnv
2 , ~36!

where

b[11FTS dpvdT D 2Y cvnv
3S ]2f

]nv
2D G . ~37!

Explicit values forq1 andq2 are obtained by solving

detUk22nvq
2

]2f

]n2m
2q2~]pv /]T!/m

2T~]pv /]T!

nv
2cv

k k2
lq2

nvcv

U50.

In the limit of smallk

q1
25cvnvkb/l,

q2
25

mk2

nvb~]2f /]nv
2!
. ~38!

Here

c2[nv
]2f

]nv
2 , ~39!

where c2 is the speed of sound in the vapor. The above
expressions forq1 andq2 have been given in@1#.

Next we obtain an expression for the ratio ofA2 /A1,
A1, andA2 being the coefficients in~36!. To do so we make
use of the boundary conditions~6! together with the condi-
tion from @5#,

nl l
dR

dt
52l

dT

dr
, ~40!

where l is the latent heat. Condition~40! implies that the
latent heat energy released in a phase transition is carried
away by pure heat conduction. This condition is consistent
with the work of @1# as is shown in Appendix A. One may
then obtain

lnlnv
Dn

u52l
dT

dr
, ~41!

using ~40! and the boundary conditions~6!, which together
with

uv5
k

nv
FA1

q1
2 S 1R0

2 1
q1
R0

D 1
A2

q2
2 S 1R0

2 1
q2
R0

D G , ~42!

the velocity evaluated at the boundaryr5R0, give a relation-
ship betweenA1 andA2. Specifically we find

A2

A1
'mklS T~]pv /]T!Dn

cvnv
2~12b!nl lbc

2 1
1

b2c2nvcv
D . ~43!

A number of approximations are made to obtain~43!. First,
the qi /R0 terms in ~42! have been dropped relative to
1/R0

2. Second, only theA1 term in ~36! is retained because it
is assumed, and later confirmed in~43!, thatA1@A2. Equa-
tion ~43! is consistent with the work of@1#. In obtaining~43!
we have retained both theA1q1

22 andA2q2
22 terms. In@1#

the former is dropped as an approximation. This is consistent
with dropping the second term on the right-hand side of~43!.
We also adopt this approximation in the calculation ofk to
be consistent with@1#. In Appendix A we calculateA2 /A1
using the formalism of@1# to show that it is identical to the
first term on the right-hand side of~43!.

Finally one can form an expression fork using

p̃5c2ñ1
dp

dT
u, ~44!

with

p̃50,

u5
2sTR̃

lnlR0
2 ~45!

given in @5#. The expression foru, given by ~45!, holds at
R5R0. In generalu is a function ofr . We discuss the origins
of both conditions in~45! in some detail so that it is clear
how they may be modified when viscosity is introduced. It is
interesting to note that in the absence of a temperature
change,u, one would havep̃v}22s/R0

2. Physically this
means that the vapor pressure is being lowered as the drop
grows. The drop pressure is also being lowered. This is rea-
sonable because in the coexistence equilibrium situation the
pressure of both a large amount of vapor and liquid is lower
than both the liquid and vapor pressures in the supersaturated
region forT constant. The presence ofu due to heat being
released leads to an increase in the vapor pressure. The ap-
proximation in@1# is that p̃v not change while both tempera-
ture and density do change. This approximation is consistent
with k being small. To examine the approximation in more
detail one evaluatesñ andu ~36! at the surface to find

ñ

u
5

A11A2

@A1/~12b!1A2#

cvnv
2

T]p/]T
. ~46!

Using the condition~43! and assuming thatk is small allows
one to neglectA2 relative toA1. Using the expression for
b, ~37!, we then find

ñ

u
52

c2

dp/dT
, ~47!

which is just the result obtained using~44! and p̃v50.
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The second condition of~45! can be obtained by keeping
the temperature change and the chemical potential across the
liquid-vapor boundary the same and using the thermody-
namic result@9#:

dS m

T D52
w

nT2
dT1

dp

nT
. ~48!

This leads to

dpv
nv

2
dpl
nl

5
dT

T Swl

nl
2
wv

nv
D . ~49!

Here dp and dT are understood to be changes in pressure
and temperature between a situation of a drop in unstable
equilibrium with a surrounding vapor and a perturbed, grow-
ing drop, i.e.,

dpv[ p̃v ,

dT[u. ~50!

Equation~49! is equivalent to the expression

Pl

nl
2
Pv

nv
5
dT

T Swl

nl
2
wv

nv
D , ~51!

wherePv in ~51! is the deviation from the pressure of a large
amount of liquid in equilibrium with a vapor with negligible
surface effects present. For a drop in unstable equilibrium

P̄i5
ni
Dn

2s

R0
, ~52!

hence

P̄v

nv
2
P̄l

nl
50 ~53!

and sodp in ~49! can be replaced withP5 P̄1dp, which is
consistent with the work of@5#. Using

mv5m l ~54!

and the relationship between Gibb’s free energy and the
chemical potential

mvNv5Gv , ~55!

whereNv is the number of vapor particles, one can show that

wv

nv
2
wl

nl
5 l , ~56!

l being the latent heat per particle. Thus one is led to an
expression

p̃l
nl

2
p̃v
nv

52
lu

T
. ~57!

This expression may be used to solve foru at the boundary
as has been shown in detail in@5#.

To obtain an explicit expression fork one differentiates
~44! with respect to time with values forp̃v andu given by
~45!. Next one replacesṘ, arising from u̇, in terms ofuv
using ~6! to obtain

c2kñ5]Tp
2sT

nlR0
2

nvuv
Dn

. ~58!

ñ anduv can be evaluated using~36!, ~42!, and~43!. Drop-
ping terms withA1q1

22 in comparison withA2q2
22 as well as

termsq relative to 1/R0 in u ~42! leads to an expression for
k. We also neglectA2 /A1 relative to 1. Under the assump-
tion thatk is small (!1):

k5
2sTl

~nl l !
2R0

3 , ~59!

which agrees with the corrected results of@1,5#.
In the presence of viscosity, with viscosity coefficients

h andz, modifications to first order inu lead to the replace-
ment of ~34! with

k2ñ5
1

m
¹W •n¹W ~2K¹W 21 f 9!n1

1

m
¹W 2

dP

dT
u

1¹W •n¹W S 43h1z Dkñ
1

n
. ~60!

Equation ~33! remains unchanged to first order inu. It is
possible to incorporate the first and third terms on the right-
hand side of~60! and replacec2 with

c21S 43hv1zvD k

nvm
~61!

in ~38! and ~43!. The boundary conditions with viscosity
become

nlul2nvuv5Dn
dR

dt
,

pl1nl~ul2Ṙ!21bl2pv2nv~uv2Ṙ!22bv5
2s

R0
,

nl l
dR

dT
52l

dT

dr
22hu] ru2S z2

2

3
h Du¹W •uW . ~62!

The conditions~62! are a consequence of the continuity of
the energy-momentum tensor@9,6#. Herebi is given by~18!.
We, however, drop the viscosity terms of second order in
u. These modified boundary conditions lead to forms ofp̃v
andu different than those used in the nonviscous case~45!.
We now determine these new expressions. The condition,
p̃v50, is altered as the ratio ofñ to u is changed from~47!
to

ñv
u

5~12b8!S T]p/]T

cvnv
2 D 21

, ~63!

where
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12b852
T~]p/]T!2

mcvnv
2c2F

,

F5F11S 43hv1zvD k

nvmc2G . ~64!

Here we have made use of~36! with A1@A2 and the modi-
fication ~61!. Thus~44! together with~63! give

p̃v5u~]p/]T!S 12
1

F D . ~65!

To find u, expressions involving¹W •u in the second equa-
tion of ~62! are reexpressed in terms ofnv and expressions

involving ¹W •Ṙ, Ṙ, andu alone are reexpressed in terms of
R̃ in

p̃l~ ñl ,u!1bl~ ñv!2 p̃v~ ñv ,u!2bv~ ñv!52
2sR̃

R0
2 . ~66!

First ~66! is solved forp̃l in terms ofñv , R̃, andu. Then~63!
is used to replaceñv in terms ofũ. Finally p̃l , written as a
function of u and R̃, is inserted into~57! and a relationship
betweenu and R̃ obtained:

u5
D1~k!R̃

D2~k!
, ~67!

where

D1~k!5
22s

R0
2 1

2k

R0
S 2

4

3
h l2z l1

4

3
hv1zvD

1kS 4h l

R0
2
4nlhv

nvR0
D ~68!

and

D2~k!5
2 lnl
T

1
Dn

nv

F21

F

]p

]T
1

nl
mF

dp

c2dT

3S 43hv1zvD k

nv
. ~69!

This is to be compared with~45!, for the nonviscous case.
Expression~67!, which includes viscosity induced modifica-
tions, also containsk. To obtain an expression fork one may
differentiate~44! with respect to time using~65!:

u̇
]p/]T

F
5c2ṅ̃v . ~70!

Then one replaces theṘ in u̇ in terms ofuv . Finally, one
uses the forms~36! and ~42! together with~43! to evaluate
ñv anduv . Again only theA1 term in ñv and theA2q2

22 in
uv are retained. For the viscous caseq2

2 is replaced with
q2
2(b/b8F) in uv andb with b8, given by~63!, andc2 with
Fc2 in A2 /A1. One finally obtains

k5
D1~k0!l

R0lnlD2~k0!
. ~71!

This is understood to hold in the limit of smallk. As a first
approximation we have replacedk in ~67! with the result for
k0, the value in the absence of viscosity~59!.

V. RELATIVISTIC CASE: HEAT CONDUCTION
BUT NO VISCOSITY

The energy flux associated with heat conduction is not the
same in the relativistic and nonrelativistic cases. In the
former case one has@9#

2lS ¹W T2
T

w
¹W pD ~72!

while in the latter

2l¹W T. ~73!

The work of @4# suggests the same form for both, i.e.,~29!.
We examine the relativistic case in detail here to see if the
expression fork is altered from the nonrelativistic result. For
simplicity we ignore viscosity in this section. One may note
that in the nonrelativistic limitw→e@p and the two expres-
sions,~72! and~73!, for heat conduction become the same. In
order to determine the effects of heat conduction onk for the
relativistic situation we solve the following transport equa-
tions

] tẽ52w¹W •uW ,

w] tuW 52¹W p̃,

2] tñ2¹W •~nuW !52lS nTw D 2S 2
w

nT2
] t
2T1

1

nT
] t
2pD

2l
n2T2

w2 S 2w

nT2
¹W 2T1

1

nT
¹W 2pD . ~74!

Here ẽ and p̃ are variations in the energy density and pres-
sure. Terms of orderu2 and higher have been dropped in the
approximation we use~see@6#, and references therein! and
the speed of light set equal to one. In addition the solutions
in the interior are considered to be very small and so ne-
glected, as an approximation~see Ref.@6#!. It is important to
note thatu is the velocity of energy flow and not that of
particle flow for a relativistic problem with dissipative ef-
fects, i.e., heat conduction here.~In the nonrelativistic limit
the velocityu can be nonzero even in the case that the par-
ticle flow velocity is zero.! The following boundary condi-
tions are assumed:

pl2pv5
2s

R
,

m l5mv ,

wvuv5DwṘ,

Dw5wv2wl . ~75!
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Note ~48! and other thermodynamic relations hold both in
relativistic and nonrelativistic problems becausee, p, and
n, the energy density, pressure, and number density, respec-
tively, are evaluated in a frame at rest with respect to the
fluid in the formalism of relativistic fluid mechanics@9#.

One must find a relationship analogous to~40! for the
relativistic case in order to obtain an expression fork. First,
we use an additional boundary condition involving the con-
tinuity of the particle number densityn:

nl~ul2Ṙ!1n l5nv~uv2Ṙ!1nv ,

2DnṘ'nvu1nv . ~76!

Hereu5uv . Noteu2Ṙ is the velocity of energy flow rela-
tive to the velocity of the drop surface using a Galilean trans-
formation because the velocitiesu and Ṙ are understood to
be small in the approximation used. We have again ignored
the energy flow in the drop interior. An expression forn,
wherenW 5nrW/r , is given in@9#:

n i52lS nTw D 2F ]

]xi S m

T D1uiu
k

]

]xk S m

T D G . ~77!

Here m is the chemical potential. The second term on the
right-hand side of~77! is dropped to be consistent with@9#
and~48! used to obtain an expression form/T. One may now
solve ~76! for u and substitute into the third condition of
~75!. We obtain for the vapor region

2nl lṘW5l¹W T2
T

wv
l¹W p̃, ~78!

where an expression forl is obtained from~56!. One may
note that dropping the second term on the right-hand side of
~78!, which disappears in the nonrelativistic limit, yields
~40!. One may use the second equation of~74! together with
the relations] tu5ku andṘ5kR̃ to solve for¹W p̃ in terms of
R̃. Given thatṘ5kR̃ all that remains is to find an expression
for ¹W u in terms of R̃. Then ~78! yields an expression for
k. One may note that this is a different approach to finding
k than that used in earlier sections. This approach is the
relativistic analog of the method used in@5#. In the nonrela-
tivistic case of@5# ¹W u is approximated byu/R0 whereu is
given by ~45!. Expression~45! is a consequence of results
obtained from solving nonrelativistic transport equations. In
particular, the ratio ofñv to u, used to show thatp̃v50, is
found from nonrelativistic solutions of~33! and ~34!. The
condition p̃v50 is used in~57! to obtain an explicit expres-
sion for u at r5R. This same ratio must be obtained from
the relativistic solutions to see ifp̃v is still approximately
zero. To do this we solve the relativistic equations forñ and
u using the expressions

ẽv5Au1Bñv ,

p̃v5C2ñv1]p/]Tu. ~79!

The first and second equations of~74! may be combined
to give

k2~Au1Bñ!5C2q2ñ1]p/]Tq2u. ~80!

We have assumed that bothñ andu are given by the form
exp@2q(r2R0)#/r. The third equation of~74! gives

05kñ2k~Au1Bñ!2lHk2u1lHq2u1
n

w
lGq2

3~C2ñ1]p/]Tu!2lGk2~C2ñ1]p/]Tu!. ~81!

Here

H52
n

w
,

G5
nT

w2 . ~82!

We dropk2 terms in~81! in comparison tok terms. Thus we
are led to solve forq1 andq2

detUk2B2C2q2 Ak22~]p/]T!q2

kM1Nq2 Xk1Yq2
U50.

Here

M512
n

w
B,

N5GC2l,

X52
n

w
A,

Y5l~H1G!. ~83!

Two approximate solutions may be obtained, one withq2

}k2 and the other withq2}k:

q1
25k

2C2X1M]p/]T

C2Y2N]p/]T
,

q2
25k2

X2MA

]p/]TM
. ~84!

Substituting back into~80! one finds

ñ

u
5

k2B2c2q1
2

Ak22~]p/]T!q1
2 , ~85!

where terms proportional toq2
2 are dropped relative toq1

2.
Thus in the limit of smallk one obtains the sameñ to u ratio
as in the nonrelativistic problem and one may thus use ex-
pression~45! for u.

Combining the above information one finds

S 2nl l1
l2sT

k lnlR0
3D wvu

Dw
5Tlku. ~86!

In the nonrelativistic limit the right-hand side of~86! disap-
pears and one obtains the nonrelativistic result~59!. One
should note that~86! only holds in the smallk limit as this
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approximation is used to obtain~45! and evaluatedT/dr. For
the relativistic case, in the smallk limit, one obtains

k52
wv

2Tlnl l
Fnl l2S nl2l 21 8l2T2s

R0
3wv

D 1/2G . ~87!

By expanding the square root, assuming thel2 term is small,
one recovers the nonrelativistic result of@1,5#.

VI. RELATIVISTIC CASE: HEAT CONDUCTION
AND VISCOSITY

To find an expression fork in the presence of viscosity
one may still use~78! because the third equation of~62!
shows that viscous corrections to~78! are of second order in
u. Viscosity, however, affects the expressions for¹W p̃v and
u written in terms ofR̃ . New expressions for these quantities
must be found. To begin we find a relationship betweenñv
andu. To do so we define

ẽv[Sañv1Sbũ

[S0ñv

[Su. ~88!

The coefficientsSa andSb can be obtained from an expres-
sion for the energy density of the vapor material. Then it is
possible to obtain

ñv
u

5
dp/dT

C2F
, ~89!

which is almost identical to the nonrelativistic relation but
with

F511S 43hv1zvD kS0
wvC

2 ~90!

instead of~64!. The coefficientsS andS0 can be obtained
givenSa andSb together with the relationship~89!. To begin
we focus on¹W p̃v which may be expressed in terms ofu and
u. To do this we note that in the presence of viscosity the
second equation of~74! becomes

] twuW 52¹W p1¹W F S zv1
4

3
hvD¹W •u¢ G , ~91!

while the first and third equations remain unchanged to first
order inu. One may use the first equation of~74! to obtain

¹W p52wvku2S 43hv1zvD k

wv
S3¹W u. ~92!

The second term on the right-hand side of~92! is combined
with l¹W T of ~78! or

l→lF11S 43hv1zvDkS3T

wv
2 G

[l8. ~93!

One may note that¹W T5¹W u. Next we obtain an expression
for u using ~57!. We use~65! and obtainp̃l from ~17!. One
should note, however, thatu is now the velocity of the en-
ergy flow and that one uses the first equation of~74! and the
boundary conditions~75!, with viscosity included~see Ap-
pendix B!, instead of~4! and ~6!. As a result one finds

u5
R̃E1

E2
, ~94!

where

E1~k!5
22s

R0
2 1

2k

R0
S 2

4

3
h l2z l1

4

3
hv1zvD

1kS 4h l

R0
2
4hvwl

wvR0
D ~95!

and

E2~k!5
2 lnl
T

1
Dn

nv
S 12

1

F D S ]p

]TD2S3
k

wv
S 43hv1zvD .

~96!

Finally the result for the relativistick, in the limit of
small k, in the presence of viscosity can be obtained. The
same method used in the case with viscosity absent is ap-
plied. Now the equation to solve is

2Tlk22nl lk1l8
E1

E2R0
50, ~97!

which yields

k5
21

2Tl S nl l2Anl
2l 21

4Tll8E1

E2R0
D . ~98!

This expression fork may be used in calculations of the
nucleation rate of quark drops in superheated baryon mate-
rial such as those of@3#.

VII. DISCUSSION

We wish to make a numerical comparison of~3! and~98!
for the case of quark-gluon drop formation in superheated
baryon material. We use expressions and values for the nec-
essary baryon and quark-gluon plasma properties given in
the third reference of@3#. In @3# the nucleation rate,~1!, is
calculated using the expression~3! for k. Expressions for
V0 andDF are given in@3#. We evaluate the various pieces
of the rate using parameter set 1 from the third reference of
@3# at an initial temperature andR0 of 173 MeV and 0.4 fm,
respectively. We find thatI'2.631026 c/fm4 where
V050.006 4 1/fm3, exp@2DF/T#50.056, andk50.0074
c/fm. To obtain the above we have usedl50.3 c/fm2 and
h577.0 MeV/fm2 c and ignoredz ~see@3#!. The important
point to note about the evaluation ofk ~3! is that the viscos-
ity term 8/3h5205 MeV/fm2 c is much larger than the term
accounting for heat conduction, namely,lT551 MeV
c/fm2. We assume that the speed of light,c, equals one.
Thus it is the viscosity term that is responsible for most of
the numerical value ofk. Since the nucleation rateI is mul-
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tiplied by k the viscosity has an important effect on the
overall rate.

We now examine the results fork ~87! and~98! presented
in this paper. We first note that the relativistic modification
to the classical heat conduction term~72! changes the value
of k ~87! by less than 1% from the classical result~59!. This
result is due to the property thatnl l , approximated here and
in @3# by Dw, is very large compared to the second term in
the square root of~87! for the superheated baryon matter
problem. We nevertheless think that it is important to point
out that the relativistic~87! and nonrelativistic~59! forms for
k are not the same as proposed in@4#. The main numerical
importance of our expression fork in comparison to~3!,
however, is the role of the viscosity terms. In the case of~98!
it appears that the effect of viscosity is small because all of
the terms inE1 andE2, containing viscosity, are multiplied
by k0 ~59! whose small value is 0.0015c/fm. For example,
we evaluate various pieces ofE1. The dominating term
is proportional to 2s/R05250 MeV/fm3 for s550
MeV/fm2. The viscosity terms, on the other hand, are
8kh l /3'8 MeV/fm3 for h l , the viscosity of the quark-
gluon material, equal to about 2000 MeV/fm2 c @10# and
4kwlhv /wv'2 MeV/fm3. Thus the small numerical value
of k strongly suppresses the contribution of the viscous
terms. We do not evaluateE2 here because values forC2,
S0, andS are not readily available from tables given in@3#
and must instead be obtained numerically from the equation
of state@3#. We anticipate that the viscous terms inE2 are
also small because they are multiplied byk. Thus using the
expression fork presented here, i.e.,~98!, in place of ~3!
reduces the nucleation rate by a factor of about 5. The con-
clusion to be drawn from the numerical results is that the
viscous terms do not contribute appreciably tok. This has
important implications for the nonrelativistic results of
Langer and Turski@1#. In the calculation of@1# the effects of
viscosity are ignored even though a vapor with heat conduc-
tion is viscous@8#. Our results show that the viscosity terms
are multiplied byk in the nonrelativistic case~71!. k is small
for the nonrelativistic case so viscosity terms can be ignored
to good approximation in the expression ofk. Thus the
Langer-Turski expression fork, ~59!, is a good approxima-
tion even for systems with viscosity providedk is small.

As a final note we wish to compare the scaling properties
of ~3! and ~98!. Kawasaki@7# has shown that~59! scales as
e0R23, which is consistent with the requirement thatk scale
as

e3f ~e/R0!. ~99!

Heree is the correlation length, i.e., the surface thickness of
the drop, which tends to infinity as a negative power of
uT2Tcu, andf is an arbitrary function. We note thatl scales
as eg/n21 while h scales asuT2Tcu0 with e'uT2Tcu2n

@11#. Hereg and n are critical exponents described in@8#.
We ignorez as it is small. Thus the scaling properties of~3!
of @4# are dominated by the viscosity term which does not
scale according to the requirement~99!. For the expression
for k, ~98!, presented in this paper, the viscosity terms have
been shown to be small because they are multiplied byk. In
addition, the nonrelativistic result~59! describes the relativ-
istic situation for the superheated baryon material problem.

Thus the numerical value and the scaling properties ofk are
governed by those of~59!, which scales properly.

VIII. CONCLUSION

We have examined the derivation ofk in the presence of
heat conduction and viscous effects both for nonrelativistic
and relativistic problems. We find that heat conduction and
viscosity terms are not treated on the same footing as sug-
gested by~3!. Our expressions fork with viscosity contain
terms with viscosity coefficients multiplied byk itself. If k
is small these modifications due to viscosity are also small.
We also find that relativistic and nonrelativistic expressions
for heat conduction differ in form. We are not able to make
the simple connection with the nonzero baryon case@6# by
settingl equal to zero in our expression ofk as done in@4#.
We present an expression fork for a nonrelativistic medium
with viscosity and finite heat conduction~71!. We obtain an
expression fork for a relativistic, viscous vapor with finite
heat conduction~98!. Finally we show that the numerical
difference in expressions~3! and ~98! for k reduces the
nucleation rate for quark-gluon drops forming in superheated
baryon material by roughly a factor of 5.

APPENDIX A

We evaluate here the factorA2 /A1 in ~43! using the ex-
pressions of@1# instead of those of Sec. V and show that in
the limit of smallk the two results are the same. The com-
putation of Ref.@1# differs from that of this paper in that
transport equations are solved in an interface region between
the pure liquid and vapor regions. The approach of this paper
is to link the liquid and vapor regions with boundary condi-
tions and treat the interface region as having zero thickness.

We solve for the ratioA2 /A1 using the following expres-
sions from@1#:

A11A25ã~`!Y ]2f

]nv
2 ,

A1

~12b!
1A25

nv
2cvRu

T]Tp
. ~A1!

Next we evaluateã(`) using

Ã5ã~`!1
Ru]Tp

nv
2
Runl l

TDn
~A2!

and

1

3
nlclku'

2kÃlnlDn

2s
2

lu

R2 . ~A3!

We refer the reader to@1# for details concerning the origin of
these equations. Note:l should be replaced withlnl /Dn in
the expressions of@1# ~see@5#!. We thus obtain

A2

A1
5

T]Tp

~12b!bc2cvnv

kclR0
2nl

2l

lT3Dn
. ~A4!

An expression forcl is needed to allow for comparison with
~43!. To obtain such a result use is made of
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k2

k0
2 512a

k

k1l̄
, ~A5!

where

a5
3l 2nlR0

2sTcl
,

l̄5
3l

R0
2nlcl

. ~A6!

Expressions fork andk0 are given by~59! and~15! respec-
tively. The small value limit ofk is obtained in@1# by drop-
ping the left-hand side of~A5! and neglectingk relative to
l̄. To obtain a result forcl one retains the e left-hand side of
~A5! and expands the right-hand side to first order ink/l̄ and
compares the coefficients of thek2 terms. This leads to

1

k0
2 5

a

l̄2
~A7!

and

cl5
~Dn!2

nv

3Tml2

R0
2l 2nl

3 ~A8!

and ultimately to

A2

A1
5mkl

T]TpDn

cvnv
2~12b!nl lbc

2 . ~A9!

This is consistent with~43!. Note, use has been made of the
assumption of a smallk throughout both here and in@1#.

In Sec. V condition ~40!, implying energy removal
through pure heat conduction, is used. We now show that
this condition is essentially included in the expression~A3!.
The second term on the right-hand side of~A3! is equivalent
to l¹W u/R0 in the limit of small k. The first term on the
right-hand side is equivalent toDnR̃0. To see this one may
consider the expression of@1#:

2R0
3Ã~Dn!2

2s
1A2q2

22'0 ~A10!

together with

4pE r 2drñ'A2q2
224p, ~A11!

where the integral is taken over all space, the inside of the
drop has been neglected, and terms involvingq1 in the vapor
have been dropped.„It is interesting to note that near the
drop surface

ñ'A1 /R0 ~A12!

becauseA1@A2, but that over all space the approximation of
@1# is to include only theA2 part because it is multiplied by
exp@2q2(r2R0)# @see ~36!# and q2!q1 and so dies very
slowly.… As a consequence the first term on the left-hand side
of the first equation of~36! must represent the particle num-

ber change due to the drop growing from radiusR0 to
R01R̃. This change is equivalent to

DnR̃4pR0
2 . ~A13!

@One may note thatṘ5kR̃. This allows for a connection
betweenR̃ in ~A13! andṘ in ~40!.# Thus the first term on the
right-hand side of~A3! is

lnlkR̃

R0
. ~A14!

Finally one must consider the term on the left-hand side of
~A3!. This term involvingcl can be neglected in the limit of
small k used in@1#. It is also possible to calculatek in the
limit of small k setting cl to zero in ~A3! and using an
expression forÃ derived from expressions in@1#. The result
for k is identical to~59!. This shows that thecl term in ~A3!
is small and can be neglected to first approximation. Thus
~A3! with the cl term dropped,

0'nl lkR̃1l
dT

dr
, ~A15!

is equivalent to~40!.

APPENDIX B

In this appendix we sketch a derivation of the boundary
conditions ~17!, ~18!, ~62!, and ~75! with viscosity added.
For a relativistic system one may obtain boundary condi-
tions, relating two different media, by equating the
momentum-energy tensor

Ti j5pgi j1~e1p!uiuj1t i j ~B1!

in a frame moving with the interface between the two media
@9#. Hereui is the velocity of energy flow,

t i j52hS ]ui

]xk
1

]uk

]xi
1ukul

]ui

]xl
1uiul

]uk

]xl D
2S z2

2

3
h D ]ul

]xl
~gik1uiuk! ~B2!

andgi j is the a diagonal metric withg00521 and the rest of
the diagonal elements equal to 1. The boundary condition
involving pressure may be found equatingTi j xixj /r 2 across
the interface, i.e.,

Ti j
xjxi
r 2

5Fp1S 43h1z D¹W •~uW 2RW !1
4h~u2Ṙ!

r G ~B3!

and adding in a terms/R to account for the surface as done
in @2,3#. ~Note: For a relativistic system with no viscosity the
condition

pl2pv5
2s

R
~B4!
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is taken from@2,3#.! EquatingT0ixi /r across the interface
leads to the boundary condition

wv~uv2Ṙ!5wl~ul2Ṙ!. ~B5!

For the nonrelativistic case the pressure boundary conditon
of ~62! may be obtained by replacingu with the velocity of
mass flow. For a discussion of boundary conditions for both
the nonrelativistic and relativistic cases see@9#.
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