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Dependence of the dynamical factor in nucleation rates on heat conduction and viscosity
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We reevaluatec, a factor appearing in Langer and Turski’'s formulation of the nucleation rate for both
nonrelativistic and relativistic systems with both heat conduction and viscosity. For the relativistic case, the
expression fork we present may be used in the calculation of quark drops forming in superheated baryon
material with nonzero baryon number. We compare our result with numerical results in the literature and
suggest that our treatment of the effects of viscosity leads to a reduction in the quark-gluon nucleation rate.
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I. INTRODUCTION Venugopalan and Vischd#] have considered systems
with both heat conduction and viscosity and suggest that in
The classical expression for the nucleation rate of dropsuch cases
or bubbles of one phase in another, 5
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where \ is the coefficient of thermal conductivity. They

given by Langer and Turskl], has recently been applied to claim that (3) is valid in both the nonrelativistic and the
relativistic system$2,3]. Herex is related to the growth rate relativistic casegprovided there is a net baryon numper
of bubbles or drops of radiu® and critical radiud}, through  The expressio(B) has been used in recent calculations of the
dR/dt=«k(R—Ry)=«R, (g is a statistical prefactor, and nucleation rate of quark drops in superheated baryon mate-
AF the difference in free energy of systems with, and with-rial [3]. In the case of no net baryon number the authors of
out, a critical size drop present. Bubbles are formed by enf4] suggest setting the term equal to zero and thus obtain
ergy density fluctuations in the vapor. Those with ra|ii  (2). In the limit of no viscosity they obtain the nonrelativistic
smaller than a critical siz&, collapse, while those of the result of Langer and TursKil]. The work of[4] combines
critical size begin to grow exponentially. In the relativistic techniques and ideas from both the nonrelativistic work of
generalization the forrfl) is retained but\F, «, andQ, are  [5] and the relativistic work of2] for systems of zero baryon
obtained using the appropriate equation of state for the relaaumber.
tivistic material and the relativistic hydrodynamical equa- While we have recently calculated in the case of zero
tions. In this paper we will follow Ref§2,3] in assuming the baryon numbefand no heat conductigrin [6] and found a
form (1), based on the nonrelativistic Langer formalism, for result differing from that of2], the objective of the present
the relativistic nucleation rate and will focus primarily on the work is to reexamine the derivation a&f for systems with
derivation of the factow. Expressions fofl, and AF are  nonzero baryon number which allow for heat conduction as a
given in[2] and the third reference ¢8]. We wish to point mechanism for energy removal in phase transitions. In par-
out that we have no proof that the Langer nucleation rate¢icular, we focus on two main points. First we are interested
formalism can be extended to relativistic systems as has beén the form of viscosity terms ir in relationship to those of
done in[2,3]. heat conduction. A numerical evaluation (&), for the case

In particular,(1) has been applied to the calculation of the of quark-gluon drops forming in superheated baryon material
relativistic nucleation rate of hadron bubbles in quark vapoif3], shows that the viscous term dominates the heat conduc-
[2,3] and to the similar problem of quark drop formation in tion term. This implies that viscosity is important for nucle-
superheated baryon matter. Csernai and Kapji§tan ap-  ation. Such a result is not only significant for relativistic
plying the Langer-Turski nucleation ratél), to the forma- systems but is also relevant to the nonrelativistic case exam-
tion of a hadron bubble in quark vapor, have suggested thahed by Langer and Turski becau&® is suggested to hold
for both[4]. Langer and Turski have focused on the effects
of heat conduction and ignored viscosity{Ifj. If viscosity is
important then it should be incorporated into the nonrelativ-
istic expression fok. If on the other hand3) must be modi-
where#n and{ are the shear and bulk viscosity coefficients infied and a new expression shows that the effects of viscosity
the vapor region, respectively; is the surface tension, and are small then the Langer-Turski resil is a good approxi-
Aw the difference in enthalpy per volume between the twomation for viscous systems. In addition if the effects of vis-
phases. The resu(®) is proposed for a relativistic system cosity are small the nucleation rate for quark-gluon drops in
with no heat conduction and so applies to a system of zerbaryon material would be reduced from the values given in
baryon number. the third reference of3]. We specifically investigate these
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possibilities in this paper. As a second goal we wish to de- an= —5-(nﬁ),
termine the differences ir, if any, arising from heat con-

duction for relativistic versus nonrelativistic systems. We
consider both nonrelativistic and relativistic systems in our

investigation of the validity of an expression such 85 \ye set the mass per particle equal to 1 in this section for
This allows us to obtain an expression ferfor relativistic  simplicity. Equations(4) result from a linearization of the
systems in the presence of viscosity which we believe to b&iandard number density continuity and Euler equat[6is

more accurate tha(g). about number density+1 and fluid velocity O+ u. We con-

e ey S01 flo 1 he raial drecton ony. e ply )
P 9 P pe . he vapor region and ignore the solution in the liquid region
conductor, both in the presence and absence of viscosity. We . oo : .
: as the fluid velocity is small there compared with that in the
then examine the arguments used4d and suggest that a ~ = S
. N . vapor (see[1]). We relatep, to n, as done in1]:
different way of finding k is necessary. We propose a
method similar to that presented[i®] which leads to a result ap
differing from (3). We explicitly solve fork in the presence To'v=(9—n'ﬁv=c2ﬁv . (5
of finite heat conduction and viscosity for a nonrelativistic

problem to obtain an expression which, in the absence ofjere7; s the variation of density, about a stationary system,
viscosity, yields the result dfl]. Next we examine how the ot 5 grop in unstable equilibrium with a vapor, aods the

treat_m_em of heat conduction differs in relativistic and nonj-Speed of sound in the vapor. The subscripand| are to be
relativistic problems. We present a result for the former in

i ; : g . used to denote the vapor and liquid regions, respectively.
the absence of viscosity before treating a relativistic materlafhe boundary conditions at the surface of the liquid drop are
which requires the treatment of both heat conduction an

viscosity to obtain an expression fat. Finally we present 20
some numerical results for superheated baryon material un- p|_pvzﬁn
dergoing a process of quark-gluon drop nucleation to deter-
mine the physical importance of the viscosity terms and the dR
relativistic modifications to heat conduction. We determine if An——=-n,u,, (6)
the numerical dominance of the viscosity termg3happlies dt
for our expression fok and investigate how any change in
. where
(3) affects the overall nucleation rate. To conclude we exam-
ine the scaling properties aB) and the expression fok An=n,—n,. 7)
which we derive, following the treatment of scaling given by
Kawasaki[ 7]. We have specifically set, to zero.

The two equations df4) can be combined witkb) to give

he wav ion
Il. VISCOSITY EFFECTS FOR A PERFECT the wave equatio

HEAT CONDUCTOR 97 =Cc2V A, ®

It is possible to solve fok for a vapor which is a perfect
heat conductor both in the presence and absence of viscosi
Such an example is not very physical because it assumes exd —q(r—Ry)]
heat can be removed quickly enough to keep the temperature N, <exp kt) ,
constant. This example, however, simplifies the calculation
because variables, such as pressure, depend on the denWHere
and not on both density and temperature. The example of the
perfect heat conductor without viscosity was considered in k2= c2q2. (10)
[1]. We develop this example to illustrate the modifications
introduced by viscosity, and to introduce both the methodn addition the first equation of4), with i, given by (9),
and also some general features and results which arise in tlygelds
more general case where both density and temperature vary.

To begin we consider the case of a nonviscous vapor us- K
ing the method of6] based on the solution of the transport u= n,q?
equations in the vapor and liquid regions together with
boundary conditions which link one to the other. The method To obtainx one must make use of the boundary condi-
differs from the approach ofl], which uses differential tions. To do so one may first differentiaf® with respect to
equations in the narrow interface region where the densityime. Next a relationship fop is obtained from the condition
changes from that of liquid to that of vapor. The resulfbff [1,5]
is obtained in the limit of smalk. After treating the case of
a nonviscous vapor we later will turn to modifications due to _n20
viscosity. Pu= RoAn

The basic transport equations which apply to the nonrel-
ativistic case are by varyingR aboutR,, namely,

@ solution of this equation has the form

9

r
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(12
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n,20R same method of obtaining for the nonviscous case can be
p,=— m. (13  applied here. To find such an expression figr, the terms
involving u in (18) can be reexpressed in terms of density

Equation(13) can be differentiated with respect to time and UsSing the transport equations. For exampley -ai term is
(6) used to replacR in terms ofu. Finally solutions(9) and replaced with a term involvingn using the first equation of

(11) may be used to obtain (4), V-R is replaced with (RO)R.~F|naIIy (9) and(11) are
used to express in terms ofR=«xR. The result is

n,2o +1)_22 14
qu Ry~ (14) =

— _ =~ o~ 20R
p|+b|(nv1R)_pv_bv(nv!R):_?' (22)
whereq can be written in terms ot using(10). In the limit 0

of small « we obtain the result dfL] for nonviscous systems: problem arises in22) since here one has two unknowns
p, andp, . Such a problem does not occur in the relativistic
L (15  Zero baryon number problem §8] as pressure and energy
Ro(Aﬂ)2 density are given as functions of temperature aldf@r
details see Ref6].) In the absence of viscosii{l13) and

2on,
K:

by neglectingg relative to 1R, in (14). _
The inclusion of viscosity affects both Eqgl) and the _ 20R n
boundary conditiong6). Considered to first order in the P=~"R2 An (23
: 0
second equation d#) becomes
4 apply at the drop surface. In the viscous case the conditions
37t g)v (16) (13 and(23) cannot both hold. We choose to ret48), as
the velocity and thus viscous terms are neglected inside the
drop, to obtain a particular solution fcj,. Using (5) to
expressn, in terms ofp, and groupingR terms one may
obtain

natu— —V—pn+V

while the first equation of4) is unchanged. The first condi-
tion of (6) is, however, modified when viscosity is included
while the second condition d6) remains unchanged to first

order inu. The first of Eqs(6) becomes ﬁBl
- P.=~ g (24)
B+, —p,—b, = — 21 17 ’
P v Py v RO ’ where
where 2on, (4 4 2k
Bi(k)= R2An 3MTa= 376/
4 47,(u—R) 0
bi=—(§n.+z. V(i-R+ (1 4 4nn
0 + ( i IU? ) (25)
The termsb;, which arise in Eq(17), are a consequence of 0 0o
the continuity of the energy-momentum tensor in a frameand
moving with the drop surfacg9,6] (see Appendix B The
specific factor e 2, 4 K
BZ(K)_C c+ 377v+§u nv (26)

(Ui=R) (19
The method employed in the nonviscous case can now be

present in(18) represents the fluid velocity in a frame mov- applied and one obtains, in the limit of smal)
ing with the liquid-vapor interface.

The transport equations including viscosity effects can be B1(ko)
combined to obtain the following replacement f8j: " N'RoAn " (27

Here kg is the result in the absence of viscositib). Al-
though the condition of perfect heat conduction assumed in
this section may be unrealistic, the result foillustrates the

A solution of this equation is still of the forit®) but with the  general approach we use. It shows that there are two modi-
dispersion relation between andq given by fications due to viscosity, one in the dispersion relation be-
tweenx andq, the other in the expression fpy, . Although

o V. (20)

4+
§7I§

> 1
ﬂfﬁ: szzﬁ‘l' n—

v

+ the only independent variable for the perfect heat conduction
7t is density th f modificati |
2| 24 > (21) case is density these two types of modifications are also
K ¢ n K]q present in the more general case where temperature and den-

v

sity change. It also provides qualitative information on the
The boundary conditiorf17) must next be manipulated to role of viscosity in the growing droplet problem. The modi-
obtain a new expression f@, analogous tq13) so that the fication toc (21) introduces a small change iy whenk is
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small. The viscosity terms B, and B,, arising from the involve the part of the calculation focusing on the perfect
modified boundary conditions, also introduce a small correcheat conductoy.Langer and Turski, if1], solve the two
tion under the same circumstance because they are mulidifferential equations

plied by « itself.

an > -
—=-=V-(nu) (31
Ill. DISCUSSION OF METHODS OF REF. [4] ot

Referencd 4] has presented an expression fgrfor the  and
case of a drop, growing in a vapor with both finite heat
conduction and viscosity, name(@). The approach of Ref. Em Vp 1-
[4] is based on the Kotchine conditions and closely follows ———ZVu? (32
the work of [5] which, however, ignores viscosity. We ex-
amine the method of4] before considering an alternative
method of calculating< in the next section. We will find
there an expression for differing from (3).

The three key equations of R¢#l] are

usingn=n(equilibrium)+n(r)e~, uxe !, andp=c?n. The
velocity is assumed to be purely radial (82). The general
form of the second term on the right-hand side(8®) is

—U-Vu. The first equation31) is identical to the Kotchine
result(28). The second, the Euler equation, is used to replace
u in (31). Langer and Turski drop the term of ordaf.
Equation(32) is used to replacé30) in its role in finding a
AwdR/dT=—AdT/dr—(4/3n+{)ugdur/dr, (290  way to replaceu but in this case it is linear rather than
quadratic inu. In the presence of viscosity a modified ver-
and sion of the Euler equation, i.e., the Navier-Stokes equation,
is needed. If the vapor is not a perfect heat conductor then an
Awug?=20(1/Ry— 1/R). (30  additional equation describing the change in temperature
with time and the rate of conduction is needed. In such a case
gne would solve a total of three transport equations as shown
In [2]. The energy rate equatiq29) appears to incorporate
ttl']e information of these three equations but would still need
uto be solved together witi28) and a Navier-Stokes equa-

[nug]=[n]dR/dt, (28

Here Aw represents the change in enthalpy density and th
square brackets if28) denote the difference of the quantity
inside the brackets evaluated inside and outside the drop s
face atR. The first of these equation&28), represents the .
conservation of matter for the growing drop. The seconq['on'

gives the energy flux and describes how the released latent

heat is removed by heat conduction and viscosity. The third, V. NONRELATIVISTIC CASE: HEAT CONDUCTION
Eq. (30), is referred to as a momentum flux equation. AND VISCOSITY

'I;he firsth equatioE(ZS) with dI.R/dt: #(R~Ro), and We wish to present a method to solve ferwhich com-
Uri=0 S0 that[nug]=n,Ug, , implies thatug,(R=Ro).  pineg the transport differential equations with the Kotchine
Here ug, is the vapor fluid velocity evaluated at the drop ,,n4ary equations. The method, which differs from that of
surface. R—Ro) <exp(kt) and so gives the time dependence| g) |eads to a general solution farwhich agrees with the

of u. Equa_tion(30), however, suggests tha&“(R_RO) if‘ small « limit presented iff1,5]. For clarity we first examine
contrast with the result d28). This suggests a different time yho case in which viscosity is absent. Then we introduce
dependence fon. The constrast in the time dependences ofy,qgifications due to viscous effects. The two key transport

u in (30) and (28) is a problem a is understood t0 be o ations for the case of nonperfect heat condudioite
separable in time and space coordinates. The separability %nductivity)\) are

u is not so clear in the derivation p#] but is very evident in
the differential equation approaches[&f1].

Equation(30), and not(28), is used in the calculation of KO=—
Ref. [4] to replaceug in terms of R—Ry) which may then
be cancelled from both sides ¢29) to obtain a result for
«. [Note in Ref.[4] it is shown thad T/dr=(R—R;).] This
leads to the conclusion that the heat conduction and viscosity 1. . ) 1. dp
terms are of equal importance. We suggest from(E8§). that k’N=—=V.nV(—KV2+f")n+—V2-——=6. (34
Ug*(R—Ry). This implies that the viscosity term is of m m - dT
higher order and has a different time dependence than the ) )
other two terms ir(29). (One may note that ifl] all second Herec, is heat papacrryp pressure, an{ a cons';ant related
order terms inu are dropped when solving the transport t0 surface tension. The terd(r) is the change in tempera-
equations. ture from the equilibrium vaI.ue due to the release of latent

We now suggest that the inconsistency in the time deperheat energy. The pressure is related to the Helmholtz free
dency ofu can be avoided if one reject30). The approach €nergy densityf through
of [1] follows this route. We focus on the calculationfor
a perfect heat conductor in R¢fl] to demonstrate thdB80) ot (35)

is not used(A minor error in[1], corrected in5], does not p=nzi—f.

T PG a0+ 2 v2g 33
ncvd_'r( W nc, (33

and
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Equation(34) is the Navier-Stokes equation combined with athe velocity evaluated at the boundary R, give a relation-
density conservation equation. We take the solution of Eqsship betweerA; andA,. Specifically we find

(33) and(34), in the vapor region, froml], i.e.,

rn=A.exgd —q.(r —Rp) ]+ Aexd —g.(r—Rgy)],

Aq
ro= mexd—ﬁh(f—Ro)]
T(dp,/dT)
+Azexd —0x(r—Rp)] TenZ (36)
where
b=1+|T dp, |* o 71 3
=1+ d_T c,n, (7_nf . ( 7)

Explicit values forq, andq, are obtained by solving

9°f
K2 — nvq2m —g2(ap, 1dT)Im
el _1(ap, 10T) X
o —
nUCU nUCU

In the limit of small x
g3=c,n, Kb/,

2

2. (39)
9270 b(%fan?)
Here
, O a9
Cc™=n, 2’ (39

v

where ¢? is the speed of sound in the vapor. The abov

expressions fog; andq, have been given ifl].

Next we obtain an expression for the ratio Aj/A,
A1, andA, being the coefficients i(36). To do so we make
use of the boundary conditiori6) together with the condi-
tion from [5],

dR
5=

dT

n|| _)\a, (40)

wherel is the latent heat. Conditiofd0) implies that the

latent heat energy released in a phase transition is carri
away by pure heat conduction. This condition is consistent
with the work of[1] as is shown in Appendix A. One may

then obtain

aT
a!

Inn,
An

u=—N»\ (41

using (40) and the boundary conditior$), which together
with

Kk|A (1 Q1) Az(l QZ”
=— + =+ + =11, 42
af(ﬁf Ro) T EIRTR P

e

T(dp,/dT)An
2 2+
c,ni(1—b)nlbc

b%c?n.c, ) (43

A number of approximations are made to obt&d). First,
the g;/Ry terms in (42) have been dropped relative to
1/R3. Second, only thé\, term in(36) is retained because it
is assumed, and later confirmed(#8B), thatA;>A,. Equa-
tion (43) is consistent with the work dflL]. In obtaining(43)
we have retained both th&,q; > and A,q, ? terms. In[1]
the former is dropped as an approximation. This is consistent
with dropping the second term on the right-hand sid&48y.
We also adopt this approximation in the calculationkofo
be consistent with1]. In Appendix A we calculatéd, /A,
using the formalism of1] to show that it is identical to the
first term on the right-hand side ¢43).

Finally one can form an expression ferusing

) (44
with
p=0,
0= 227 (45)
In|Rg

given in[5]. The expression fop, given by (45), holds at
R=Ry. In generalf is a function ofr. We discuss the origins

of both conditions in(45) in some detail so that it is clear
how they may be modified when viscosity is introduced. It is
interesting to note that in the absence of a temperature
change, #, one would have'ﬁvoc—ZU/Ré. Physically this
means that the vapor pressure is being lowered as the drop
grows. The drop pressure is also being lowered. This is rea-
sonable because in the coexistence equilibrium situation the
pressure of both a large amount of vapor and liquid is lower
than both the liquid and vapor pressures in the supersaturated
region forT constant. The presence éfdue to heat being
released leads to an increase in the vapor pressure. The ap-
proximation in[1] is thatp, not change while both tempera-
ture and density do change. This approximation is consistent
with « being small. To examine the approximation in more
EQ]etaiI one evaluates and 6 (36) at the surface to find

o A +A, c,n? "
6 [A/(1—b)+A,] ToplaT" (46)

Using the conditior(43) and assuming that is small allows
one to neglecth, relative toA;. Using the expression for
b, (37), we then find

n c? A
6 dp/dT’ 47

which is just the result obtained usirig4) andp,=0.
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The second condition g#45) can be obtained by keeping  To obtain an explicit expression far one differentiates
the temperature change and the chemical potential across th#4) with respect to time with values fq¥, and 6 given by

liquid-vapor boundary the same and using the thermody¢45). Next one replace®, arising from 6, in terms ofu,

namic resulf9]: using (6) to obtain
o w dp 20T n,u
[ bl 2 ~ v
d(T) nT2dT+ oT (48) c Kn_anng An (58)
This leads to N andu, can be evaluated usingé), (42), and(43). Drop-

ping terms withA;q; % in comparison withA,q, > as well as
(49)  termsq relative to 1R, in u (42) leads to an expression for
x. We also neglech\,/A; relative to 1. Under the assump-
etion thatx is small (<1):

n n T

v

dpu dp|_dT W w,
T n n, .

Heredp anddT are understood to be changes in pressur

and temperature between a situation of a drop in unstable 20T\
gqU|I|br|um with a surrounding vapor and a perturbed, grow- K= m (59
ing drop, i.e., o

dp,=p which agrees with the corrected results| df5].
v In the presence of viscosity, with viscosity coefficients
dT=0. (50) 7 and ¢, modifications to first order in lead to the replace-
ment of (34) with

Equation(49) is equivalent to the expression
o 1. o =, 1 »zdP
k'n=—=V-nV(=KV*+f")v+ =V
m m

——0
P P, dT(w, w, dT
n—"n—=?(n—"n—)' D
- - V0|2 4| e (60)
-nV| = n—.
whereP,, in (51) is the deviation from the pressure of a large 3" £« n

amount of liquid in equilibrium with a vapor with negligible ) . ' . _
surface effects present. For a drop in unstable equilibrium Equation(33) remains unchanged to first order in It is
possible to incorporate the first and third terms on the right-

— nj 20 hand side 0f60) and replace? with
i— A~ D ! (52)
An Rg
24+ : +L, | — (61)
hence G e n,m
P_v P_| in (38) and (43). The boundary conditions with viscosity
oo (53 become
v |
and sodp in (49) can be replaced Witﬁ’=P_+dp, which is N U — N, U :And_R
consistent with the work df5]. Using v dt’
b= (54) : : 2
e pi-+ 1y (U —R)?+by—p, —n, (U, ~R)?=b, ==,
0

and the relationship between Gibb's free energy and the
chemical potential

dR T 2 N
nl —2nud,u— 37 uv-u. (62

1N, =G, , (55) at~ Mar
whereN, is the number of vapor particles, one can show thafThe conditions(62) are a consequence of the continuity of
the energy-momentum teng@,6]. Hereb; is given by(18).
w, W, We, however, drop the viscosity terms of second order in
n, n—|=|, (56) 4. These modified boundary conditions lead to formgpf
and @ different than those used in the nonviscous o@é&s.

| being the latent heat per particle. Thus one is led to ai¥ve now determine these new expressions. The condition,

expression p,=0, is altered as the ratio af to # is changed fron{47)
to
5I Tju 1o
nTn T (57) Py o[ TOPIOT| .
Ll al B (63

This expression may be used to solve foat the boundary
as has been shown in detail [if]. where



L b e T(aplaT)?
~ me,nZc?F’
F=|1 2 “ 64
=1+ zmté nmé| (64)

Here we have made use (#6) with A;>A, and the modi-
fication (61). Thus(44) together with(63) give

11
E.

To find 6, expressions involvinju in the second equa-
tion of (62) are reexpressed in terms Bf and expressions

P,=6( ap/aT)( (65)

involving V- R, R, andu alone are reexpressed in terms of

Rin
5l(ﬁ| !0)+b|(ﬁv)_’5v(’ﬁv !0)_bv(ﬁv)=

First(66) is solved forp, in terms ofn, , R, andé. Then(63)
is used to replacEU in terms of@. Finally p,, written as a
function of ¢ andR, is inserted intd57) and a relationship
betweend andR obtained:

_ Dy(w)R
- Dy(k)’

(67)

where

—20 2k
D1(K)=F+R—O
0

4 4
_§ﬂ|_§|+§7lv+§v

JrK(47I| _4n|77v) 69)

R_O nv R0
and

_|n|

AnF-14p
Dz(K):?‘l‘

ndp
n, F 4T mFcXdT

K
X

4
5770"‘50 (69)

n_v.
This is to be compared witl45), for the nonviscous case.
Expression67), which includes viscosity induced modifica-

tions, also containg. To obtain an expression farone may
differentiate(44) with respect to time usin¢65):

aploT .
P =c%n

6—= .

(70

Then one replaces thR in 6 in terms ofu, . Finally, one
uses the form¢36) and (42) together with(43) to evaluate
n, andu, . Again only theA,; term inTi, and theA,q, % in

u, are retained. For the viscous caqé is replaced with
g5(b/b’F) in u, andb with b’, given by(63), andc? with

Fc? in A,/A,. One finally obtains
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Di(xo)A

“= RyinDy(xg)" 7D

This is understood to hold in the limit of smadl As a first
approximation we have replaceadin (67) with the result for
Ko, the value in the absence of viscos{gg).

V. RELATIVISTIC CASE: HEAT CONDUCTION
BUT NO VISCOSITY

The energy flux associated with heat conduction is not the

same in the relativistic and nonrelativistic cases. In the
former case one hd9]
A ¥T- Lv 72
WP (72)
while in the latter
—AVT. (73

The work of[4] suggests the same form for both, i.&9).

We examine the relativistic case in detail here to see if the
expression fok is altered from the nonrelativistic result. For
simplicity we ignore viscosity in this section. One may note
that in the nonrelativistic limitv—e>p and the two expres-
sions,(72) and(73), for heat conduction become the same. In
order to determine the effects of heat conductioncdor the
relativistic situation we solve the following transport equa-
tions

(9{6: —-wV- G,

>

W(?t'j:_v—ﬁ,
. nT\?2 wo, 1,
—on—=V-(nu)=—x W —ﬁzﬂtT-Fn—Té'tp
xnsz “Wear, g 74
s AR A B

Here'e andp are variations in the energy density and pres-
sure. Terms of ordew? and higher have been dropped in the
approximation we usé¢see[6], and references thergiand

the speed of light set equal to one. In addition the solutions
in the interior are considered to be very small and so ne-
glected, as an approximatigsee Ref[6]). It is important to
note thatu is the velocity of energy flow and not that of
particle flow for a relativistic problem with dissipative ef-
fects, i.e., heat conduction her@n the nonrelativistic limit
the velocityu can be nonzero even in the case that the par-
ticle flow velocity is zero. The following boundary condi-
tions are assumed:

20
pi— pv:E!
M= My
wvuvawR,

Aw=w,—w;. (75
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Note (48) and other thermodynamic relations hold both in k’(A6+Bn)=C?g%n+ap/aTq>6. (80)
relativistic and nonrelativistic problems becausep, and
n, the energy density, pressure, and number density, respe/e have assumed that bathand 6 are given by the form
tively, are evaluated in a frame at rest with respect to thexd —qg(r—Ry))/r. The third equation of74) gives
fluid in the formalism of relativistic fluid mechani¢9].

O_n(_a must fin_d a relationship analogous (@) for _the 0= kA— k(AG+ Bﬁ)—)\HK29+)\Hq26+E)\Gq2
relativistic case in order to obtain an expression&ofFirst, w
we use an additional boundary condition involving the con-

25 _ 22/
tinuity of the particle number density: X(C*n+3p/dTo)—NGk™(Cn+dp/dTe).  (81)

. . Here
n|(U|_ R)+ Vlznv(uu_ R)+ Vys
_ n
—AnR~n,u+u, . (76) H=-
Hereu=u, . Noteu—R is the velocity of energy flow rela- nT
tive to the velocity of the drop surface using a Galilean trans- G=47 (82

formation because the velocitiesand R are understood to
be small in the approximation used. We have again ignoretiVe drop«? terms in(81) in comparison toc terms. Thus we
the energy flow in the drop interior. An expression far  are led to solve fog; andq,

wherev=vr/r, is given in[9]:

nT\?
Viz_)\ W

. k’B—C?9?> Ak*—(dpldT)q>
FTM+NG  Xe+ YR

J [m K Jd [um
W(?)”i“ &R(? - @

Here u is the chemical potential. The second term on the n
right-hand side of77) is dropped to be consistent wifB] M=1-—B,
and(48) used to obtain an expression f@fT. One may now w
solve (76) for u and substitute into the third condition of

Here

— 2
(75). We obtain for the vapor region N=GC\,
) . T . _.n
~nIR=AVT~ —\Vp, (79) X=—gh
Y=A(H+G). (83

where an expression fdris obtained from(56). One may
note that dropping the second term on the right-hand side
(78), which disappears in the nonrelativistic limit, yields
(40). One may use the second equatior(m)atogether with

0fc'wo approximate solutions may be obtained, one wvgjth
* k? and the other withg?e« «:

the relationsi;,u= xu andR= R to solve forVp in terms of 5 —C?X+MaplaT

R. Given thatR= xR all that remains is to find an expression r=x C2Y—Nogp/aT

for V@ in terms of R. Then (78) yields an expression for

. One may note that this is a different approach to finding s, X—MA

k than that used in earlier sections. This approach is the Q2= x IpldTM” (84)

relativistic analog of the method used[d)]. In the nonrela-

tivistic case of[5] V¢ is approximated byd/R, where@ is  Substituting back int¢80) one finds

given by (45). Expression(45) is a consequence of results _ ) » 2

obtained from solving nonrelativistic transport equations. In n_k B—c a1 (85)
particular, the ratio ofi, to ¢, used to show thap,=0, is 0  Ax’—(oplor)a;’

found from nonrelativistic solutions of33) and (34). The

conditionp, =0 is used in(57) to obtain an explicit expres- where terms proportional tq3 are dropped relative tg3.

sion for # at r=R. This same ratio must be obtained from Thus in the limit of smallk one obtains the saneto 6 ratio

the relativistic solutions to see T, is still approximately as in the nonrelativistic problem and one may thus use ex-
zero. To do this we solve the relativistic equationsroand  pression(45) for 6.

0 using the expressions Combining the above information one finds
‘e,=A6+Bn N20T )\ w,u
v v — + — = i
3 nl Kln|R8) Av TAku (86)
p,=C?n,+aplITé. (79

In the nonrelativistic limit the right-hand side ¢86) disap-
The first and second equations @) may be combined pears and one obtains the nonrelativistic re¢gf). One
to give should note tha86) only holds in the smalk limit as this
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approximation is used to obta{45) and evaluatel T/dr. For ~ One may note thal T=V 0. Next we obtain an expression
the relativistic case, in the smadl limit, one obtains for 6 using(57). We use(65) and obtainp, from (17). One
should note, however, that is now the velocity of the en-

__ W nl = n212+ 8\ ?T2g | 12 87) ergy flow and that one uses the first equatiorif@l and the
2Tanl | ! oW, boundary condition§75), with viscosity included(see Ap-

pendix B), instead of(4) and (6). As a result one finds
By expanding the square root, assumingXReerm is small,

one recovers the nonrelativistic result[af5]. RE;
==, (94)
E,
VI. RELATIVISTIC CASE: HEAT CONDUCTION
AND VISCOSITY where
To find an expression fok in the presence of viscosity EL(k) = _20+ 2¢( 4 - 4 e
one may still use(78) because the third equation 662) ! RZ "Ry 37T g

shows that viscous corrections ({f68) are of secong order in
u. Viscosity, however, affects the expressions Yav, and T K(ﬂ_ 47’UWI) (95)
0 written in terms ofR . New expressions for these quantities Ro  w,Ro

must be found. To begin we find a relationship betwagn

and #. To do so we define and
- = ~ E _ —In Anl 1\ dp K [4
€,=SaN, + S 2(K)—?+n—v “EllT —Saw—v 3t
=S, (96)
=Sg. (88) Finally the result for the relativistiae, in the limit of

small «, in the presence of viscosity can be obtained. The
The coefficientsS, and S, can be obtained from an expres- same method used in the case with viscosity absent is ap-
sion for the energy density of the vapor material. Then it isplied. Now the equation to solve is
possible to obtain
E;

_ 2_ ’ —

E_Mr - TAkc—nlk+\ ERy 0, (97)

9 C*F’ o

which yields
hich is al t identical to th lativisti lation but
aitﬁ: is almost identical to the nonrelativistic relation bu _q N VU
k==—| nl—=~\/nfl*+ ———]|. (98)
2T\ E,R,
4 kSp . . . .
F=1+ §77v+§v Wl (90) This expression fok may be used in calculations of the

nucleation rate of quark drops in superheated baryon mate-

instead of(64). The coefficientsS and S, can be obtained rial such as those dB3].

givenS, andS, together with the relationshi(89). To begin
we focus onVp, which may be expressed in terms ®fand

u. To do this we note that in the presence of viscosity the \We wish to make a numerical comparison(8f and (98)
second equation df74) becomes for the case of quark-gluon drop formation in superheated
baryon material. We use expressions and values for the nec-
essary baryon and quark-gluon plasma properties given in
the third reference of3]. In [3] the nucleation rate(l), is
calculated using the expressi@8) for «. Expressions for
while the first and third equations remain unchanged to firsf), andAF are given in3]. We evaluate the various pieces
order inu. One may use the first equation @) to obtain  of the rate using parameter set 1 from the third reference of
[3] at an initial temperature ard, of 173 MeV and 0.4 fm,
respectively. We find thatl~2.6x10 ® c/fm* where
0,=0.006 4 1/in?¥, exd—AF/T]=0.056, and x=0.0074
c/fm. To obtain the above we have uske0.3 c/fm? and

The second term on the right-hand side(®®) is combined  7=77.0 MeV/fm? ¢ and ignored (see[3]). The important
with AVT of (78) or point to note about the evaluation sf(3) is that the viscos-

ity term 8/3p=205 MeV/fm? c is much larger than the term
accounting for heat conduction, namel}T=51 MeV
c/fm?. We assume that the speed of lighkt, equals one.
Thus it is the viscosity term that is responsible for most of
=\". (93)  the numerical value ok. Since the nucleation rateis mul-

VIl. DISCUSSION

Jwu=—Vp+V , (92)

4 -
§U+§7]v)v'u

- 4 K R
Vp:_WvKu_(gan’_gv VTUS3V0 (92

®S5T

2
Wv

A=A 1+

4 +
§77v gv
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tiplied by « the viscosity has an important effect on the Thus the numerical value and the scaling properties afe

overall rate. governed by those d59), which scales properly.
We now examine the results far(87) and(98) presented
in this paper. We first note that the relativistic modification VIII. CONCLUSION
to the classical heat conduction tefi#2) changes the value _ o ]
of k (87) by less than 1% from the classical res@$). This We have examined the derivation efin the presence of

result is due to the property thail, approximated here and heat conduction and viscous effects both for nonrelativistic
in [3] by Aw, is very large compared to the second term inand relativistic problems. We find that heat conduction and

the square root of87) for the superheated baryon matter ViSCOSity terms are not treated on the same footing as sug-
problem. We nevertheless think that it is important to pointdested by(3). Our expressions fok with viscosity contain
out that the relativisti¢87) and nonrelativisti¢59) forms for ~ terms with viscosity coefficients multiplied by itself. If «

« are not the same as proposed ). The main numerical 1S Small these modifications due to viscosity are also small.
importance of our expression for in comparison to(3) We also find that relativistic and nonrelativistic expressions

however, is the role of the viscosity terms. In the cas96f for hgat conductioni differ_ in form. We are not able to make
it appears that the effect of viscosity is small because all ofh® Simple connection with the nonzero baryon cigeby
the terms inE, andE,, containing viscosity, are multiplied Setting\ equal to zero in our expression efas done irf4].

by o (59) whose small value is 0.001&fm. For example, We present an expression ferfor a no'nrelatlwstlc me_dlum
we evaluate various pieces &,. The dominating term With viscosity and finite heat conductid1). We obtain an

is proportional to 2/Ry=250 MeV/iim3® for o=50 expression fO.I'K for a rglat|V|st|c, viscous vapor with ﬂmte
MeV/fm2. The viscosity terms, on the other hand, areheat conduction(98). Finally we show that the numerical
8x7,/3~8 MeV/fm? for 7, the viscosity of the quark- differen_ce in expressiong3) and (98) for K r_educes the
gluon material, equal to about 2000 MeV/Ant [10] and nucleation rate for quark-gluon drops forming in superheated
4xkw, 7, Iw,~2 MeV/fm?. Thus the small numerical value Paryon material by roughly a factor of 5.

of « strongly suppresses the contribution of the viscous

terms. We do not evaluaté, here because values fa?, APPENDIX A

Sy, and S are not readily available from tables given[iB] We evaluate here the factdr, /A, in (43) using the ex-

and must instead be obtained numerically from the eq“atiOBressions of1] instead of those of Sec. V and show that in
of state[3]. We anticipate that the viscous termsEp are i jimit of small « the two results are the same. The com-
also small because they are multiplied byThus using the 5 tation of Ref.[1] differs from that of this paper in that
expression fork presented here, i.e(98), in place of(3)  ansport equations are solved in an interface region between
reduces the nucleation rate by a factor of about 5. The conye hyre liquid and vapor regions. The approach of this paper
clusion to be drawn from the numerical results is that theg (g |ink the liquid and vapor regions with boundary condi-
viscous terms do not contribute appreciablydoThis has  ions and treat the interface region as having zero thickness.

important implications for the nonrelativistic results of  \ye selve for the ratich, /A, using the following expres-
Langer and TursKil]. In the calculation of1] the effects of  gions from[1]:

viscosity are ignored even though a vapor with heat conduc-

tion is viscoud 8]. Our results show that the viscosity terms - *f
are multiplied byx in the nonrelativistic cas€’1). « is small ArtAz=a(») FrRve
for the nonrelativistic case so viscosity terms can be ignored v
to good approximation in the expression ef Thus the A nZc. RA
Langer-Turski expression fot, (59), is a good approxima- = +A,=— . (A1)
tion even for systems with viscosity providedis small. (1-b) Torp
As a final note we wish to compare the scaling propertiesNe t we evaluat@ sin
of (3) and (98). Kawasaki[7] has shown that59) scales as xtwe evaluata(e) using
€°R™3, which is consistent with the requirement thascale - ROsp Rén|
as A=A(=)+ — =~ 714 (A2)
> (elRy). 99  and
Here e is the correlation length, i.e., the surface thickness of 1 — KR'I’HAI’\ Y
the drop, which tends to infinity as a negative power of §”|C|K9“T—@- (A3)

|T—T|, andf is an arbitrary function. We note thatscales

as €”’"~1 while 5 scales agT—T|? with e~|T—Tg|™"  We refer the reader ] for details concerning the origin of
[11]. Here y and v are critical exponents described i8].  these equations. Noté:should be replaced witm,/An in
We ignore{ as it is small. Thus the scaling properties(8f  the expressions dfl] (see[5]). We thus obtain
of [4] are dominated by the viscosity term which does not

scale according to the requireme@®). For the expression A, Torp ke R3n?

for «, (98), presented in this paper, the viscosity terms have A_1: (1-b)bcZc,n, AT3An
been shown to be small because they are multiplied.by

addition, the nonrelativistic resu(69) describes the relativ- An expression foc, is needed to allow for comparison with
istic situation for the superheated baryon material problem(43). To obtain such a result use is made of

(A4)



(A5)

where

31%n|R,
T 24Tc

3\

A= A6
R0n|C| ( )

Expressions fok and kg are given by(59) and(15) respec-
tively. The small value limit ofx is obtained in1] by drop-
ping the left-hand side ofA5) and neglectingc relative to
\. To obtain a result foc, one retains the e left-hand side of
(A5) and expands the right-hand side to first ordexfn and
compares the coefficients of th& terms. This leads to

1 o« A7
G A7
and
_(An)? 3Tm\? A8
“n, R o
and ultimately to
A, TdrpAn
— . A
A, mK)\cvnf(l—b)mlbc2 (A9)

This is consistent witl{43). Note, use has been made of the
assumption of a smak throughout both here and [d].
In Sec. V condition (40), implying energy removal

through pure heat conduction, is used. We now show that

this condition is essentially included in the expresdiAB).
The second term on the right-hand sidegA8) is equivalent
to AVO/R, in the limit of small . The first term on the
right-hand side is equivalent thnR,. To see this one may
consider the expression f]:

—~R3A(AN)2 )

5y A 2~0 (A10)
together with

4ar J r2drn~A,q, %4, (A11)

DEPENDENCE OF THE DYNAMICAL FACTORN . ..

2587

ber change due to the drop growing from radigs to
Ro+ R. This change is equivalent to

AnR47R. (A13)

[One may note thaRz_Kﬁ. This allows for a connection

betweerR in (A13) andR in (40).] Thus the first term on the
right-hand side ofA3) is

|n|K§
Ro

(A14)

Finally one must consider the term on the left-hand side of
(A3). This term involvingc, can be neglected in the limit of
small k used in[1]. It is also possible to calculate in the
limit of small « settingc, to zero in(A3) and using an
expression foA derived from expressions iri]. The result

for k is identical to(59). This shows that the, term in (A3)

is small and can be neglected to first approximation. Thus
(A3) with the ¢, term dropped,

O%n||KR+)\ dr’

(A15)
is equivalent ta(40).

APPENDIX B

In this appendix we sketch a derivation of the boundary
conditions (17), (18), (62), and (75) with viscosity added.
For a relativistic system one may obtain boundary condi-
tions, relating two different media, by equating the
momentum-energy tensor
Ti=pgd!+(e+p)u'ul+7 (B1)
in a frame moving with the interface between the two media
[9]. Hereu' is the velocity of energy flow,

|

5—577

au auk aul Juk

ij +—+uku' — +d'd
axk " ax ax' X’

T'=—7

andg' is the a diagonal metric witg°°= —1 and the rest of

the diagonal elements equal to 1. The boundary condition
involving pressure may be found equatifitdx'x!/r? across

07U| ik ik
W(g +u'u) (B2)

where the integral is taken over all space, the inside of théhe interface, i.e.,

drop has been neglected, and terms invol\gagn the vapor
have been droppedlt is interesting to note that near the
drop surface

n~A, /IR, (A12)
becausé\;>A,, but that over all space the approximation of
[1] is to include only theA, part because it is multiplied by
exd —ou(r—Ry)] [see (36)] and g2<qgl and so dies very

slowly.) As a consequence the first term on the left-hand side

of the first equation of36) must represent the particle num-

..Xin 477(U—R)
r

T = V. (0—R)+ (B3)

p+

4+
§77§

and adding in a terna-/R to account for the surface as done
in [2,3]. (Note: For a relativistic system with no viscosity the
condition

20

P pv:? (84)
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is taken from[2,3].) EquatingT%x;/r across the interface For the nonrelativistic case the pressure boundary conditon

leads to the boundary condition of (62) may be obtained by replacing with the velocity of
. . mass flow. For a discussion of boundary conditions for both
w,(u,—R)=w,(u—R). (B5)  the nonrelativistic and relativistic cases $6¢
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